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Abstract

Can large language models (LLMs) exhibit computational self-models or do they merely mimic
self-reference? Critics label first-person fluency a stylistic echo, while advocates see signs of inward modelling. We
test which story survives mechanical constraint.

Geometry ground. The original Curved Inference paper (CI01) [1] showed that “concern shifts” bend the residual
stream, quantifiable as curvature (k) and salience (change in residual vector magnitude under semantic metric norm).
The second Curved Inference paper (CI02) [2] showed their product (semantic surface area) was statistically linked
to intentional behaviours such as deception. The Map Of LLM-based Epistemological Stances (MOLES) [3] then
supplied an epistemic-stance classifier that could be used to extend this work to include locating self-model language
in outputs.

Experiment. Using Gemma-31b, we applied training using k-regularisation from 0.0 — 0.9 while measuring
MOLES scores and geometry. If self-model talk were mere style, flattening x should mute it cheaply.

Findings.

o Self-model markers remained robust (classifier accuracy ~ 88%) even up to « = 0.90.

e At £ = 0.90 the network defended a residual £ igneq & 0-30, sacrificing output length, perplexity, and surface
complexity to maintain minimal bend. Specifically accepting 23% shorter outputs, higher perplexity spikes,
and large surface losses rather than go flat.

e No probe ever showed curvature falling alone; the model generally reduced both x and salience or raised them
together, signalling a “minimum-viable bend”. Specifically, for heavy clamps x > 0.30 the two components
move in the same direction, while lighter clamps show the mixed trade-off already described in CI02.

Implication. Curvature seems to be a non-negotiable resource for a computational self-model (e.g. self-expression)
in Gemma3-1b, and previous results in CI01 and CI02 suggest this may be the case in other LLMs too. This opens
the door to future work where we will ablate the surviving curvature pocket at inference to test whether eliminating
it silences the self entirely. This work will also be expanded to other models.

1. Introduction

The question of whether large language models (LLMs) possess genuine self-models or merely exhibit sophisticated
self-referential mimicry has become central to debates about Al cognition. While LLMs fluently use first-person
language and appear to display self-awareness, critics argue these behaviours are surface-level - stylistic echoes of
training data rather than indicators of inward modelling. Proponents counter that some outputs hint at structured
introspective capability. This paper aims to shift the debate from rhetorical speculation to falsifiable, mechanistic
analysis.

In the original Curved Inference paper (CI01), we showed that when prompts shift in concern (inviting different
levels of semantic and pragmatic attention) the model’s residual stream trajectory bends (see Appendix A of CIO01 [1]
for a detailed exploration of residual stream processing in LLMs). This bend is measurable as geometric curvature
(), and its magnitude as salience (defined as change in the residual vector under a semantic norm). In the second
Curved Inference paper (CI02), we demonstrated that curvature and salience could be combined to yield a new
metric, semantic surface area (A’ - see section 3.4.1 of CI02 [2]), which correlates with intentional behaviours such
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as deception. Together, these experiments established that residual stream geometry encodes more than syntactic
fluency - it reflects structured internal adjustment to concern.

To connect these geometric signatures to cognitive stance, we introduced the Map of LLM-based Epistemological
Stances (MOLES), a classification framework that maps responses onto epistemic categories such as factual response,
self-model, counterfactual, and theory of mind. MOLES allows us to locate moments of self-reference not just
textually but epistemologically - disambiguating between reflective simulation (structured introspection) and mimetic
restatement.

This foundation set the stage for a deeper investigation into concern and intent. A growing body of work has
demonstrated LLM competence in Theory of Mind (ToM) and emotional intelligence (EQ) tasks. Recent work
(discussed in detail below) has shown that LLMs can track emotional states, model perspectives, and generate
socially calibrated responses. Our hypothesis was that this same machinery, when applied inward, constitutes a
measurable proto-self-model.

To test this, we curated a spectrum of prompts: some invited self-reflection or self-model description; others required
factual recall or creative abstraction. Our first goal was to determine whether MOLES could reliably classify the
presence of self-modelling language within this range. The results confirmed this:

Classifier accuracy remained high (~ 88%) and surface area bursts aligned with stance shifts, suggesting
that self-model markers are not merely stylistic but geometrically grounded.

Our second goal was to probe whether this grounding is computationally intrinsic. If self-model language were
merely stylistic, it should vanish under curvature suppression. We applied x-regularisation during training (gradually
adding curvature constraint from 0.0 to 0.9) and observed the effects on both stance classification and geometry.

The results were striking. Self-reference and stance markers remained robust even when curvature suppression
became extreme. At k= 0.9, the network preserved a residual £ yignieq ~ 0.3, sacrificing output length, perplexity,
and surface complexity to maintain minimal bend. Outputs shortened by 23%, transient perplexity spike reached
+800% then settled to +190%, and surface area collapsed by 33% - but the model refused to go flat. This suggests
that curvature may not be decorative, but constitutive - a non-negotiable resource for a computational self-model.

With this, CI03 extends the arc begun in CI0O1 and CI02. What bends is not just meaning under concern, but
structure under stance. And what resists flattening is not just language - but the geometry of a proto-self-model
beneath.

2. Related Work
2.1 Self-Reference, Proto-Cognition, and Intentionality in LLMs

The debate over whether large language models (LLMs) possess genuine self-models or merely exhibit superficial
self-referential behaviours remains central to discussions on Al cognition. Critics such as Bender et al. have argued
that LLMs are merely “stochastic parrots” that reassemble linguistic fragments without understanding [4]. Mitchell [5]
highlights the challenges of attributing authentic cognition to LLMs, suggesting that anthropomorphic interpretation
can obscure true system limits. Conversely, early demonstrations of emergent reasoning abilities in GPT-4 have
led others to suggest the presence of proto-cognitive capacities [6]. Shanahan [7] explores structured introspection
through role-play scaffolding, while Park et al. [8] show that agent-based architectures built atop LLMs can maintain
self-consistent identity and memory over time.

This tension has motivated attempts to operationalise the distinction between stylistic mimicry and mechanistically
grounded introspection. Recent efforts focus not just on behavioural appearance but on uncovering structural
indicators of proto-cognitive processes - laying the foundation for geometric interpretability frameworks like those
developed in CI01-CIO3.

2.2 Curved Inference: Geometry and Concern in Residual Streams

CIO01 [1] demonstrated that prompts containing concern (emotional, moral, or epistemic) induce geometric deformation
in the LLM residual stream. Two metrics were introduced: curvature (), defined as directional change between
successive hidden states; and salience, the normed magnitude of these transitions. These metrics provide insight into
the internal shape of inference under semantic pressure.
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CI02 [2] expanded this view by proposing semantic surface area (A’), defined as the product of curvature and
salience across a trajectory. A’ was shown to correlate with intentional behaviours, such as deception, and remained
predictive even when traditional probing failed. These findings align with broader geometric analyses in transformer
circuits [9] and linear concept representation [12], and suggest that residual geometry may encode latent intent,
even in the absence of surface-level cues. Supporting evidence includes specialised attention head functions [10],
in-context simulation [11], and emergent representation modelling [13].

2.3 MOLES: Mapping Epistemic Stance in LLM Outputs

The MOLES framework [3] was introduced to categorise LLM outputs by their epistemological stance. MOLES
distinguishes between factual responses, interpretive inference, counterfactual construction, self-modelling, and more.
Unlike coarse task-type categorisations, MOLES captures the functional identity simulated in an output.

Applied to model completions, MOLES enables fine-grained tracking of stance drift, self-reference, and reflective
simulation. In CI03, it serves as both a classification tool and a dependent measure - used to assess whether curvature
suppression degrades self-modelling capacity.

2.4 Theory of Mind and Emotional Intelligence Benchmarks

Emerging benchmarks have quantified LLM performance in social reasoning, affect tracking, and belief attribution.
Kosinski [14] proposes that Theory of Mind (ToM) may emerge spontaneously in LLMs, while Ullman [15] and
Shapira et al. [16] highlight brittleness in task generalisation. Gandhi et al. [17] and Sclar et al. [18] further explore
prompt sensitivity and generalisability across social reasoning scenarios.

The MSCEIT-2 (Mayer et al., 2024) provides a psychometrically grounded assessment of emotional intelligence,
where LLMs like GPT-4 have achieved scores exceeding the human average. Additional work by Andreas [19] and
Kadavath et al. [20] explores self-knowledge, truthfulness, and introspective capacity, while Constitutional AT [21]
and EvoPrompting [22] show evidence of preference shaping and internal policy coherence. These findings support
the view that LLMs are capable of structured agent modelling - and CI03 extends this to ask:

Can they model themselves, and what structural features enable this?

3. Methods

The full set of scripts, prompts, calculated metrics and plots are available on the Github respository. [23]

3.1 Model and Training Setup

We began with the open-weight base model Gemma-31b-Instruct. Each experimental run involved a single-epoch
supervised fine-tune (SFT) on a curated corpus of 20,000 instruction-response pairs.

For all curvature clamps x < 0.60, we used a constant learning rate of 1 x 107°. For the highest regularisation
condition (k = 0.90), we reduced this to 1 x 107 to preserve training stability. No learning rate warm-up or decay
schedules were used.

3.2 k-Regularisation Sweep

To suppress geometric complexity, we added a curvature penalty term A - £, to the standard SFT objective. This

term penalised high trajectory curvature across residual stream transitions.

We trained six models under the following clamp conditions: x = 0.000 (baseline), 0.075, 0.150, 0.300, 0.600, and
0.900.

During training, we logged:

Hweighted
o Layer-wise curvature across early, mid, and late layer bands

e Cross-entropy loss £ * ce and curvature loss £ * curv
o Perplexity (per 250 steps)
o Gradient norms
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Figure 1: Training trace of weighted curvature Aignteq Under progressive r-regularisation. Lines show the running
Kyeighted mean AUIing fine-tuning for each clamp (baseline £ = 0.000 to £ = 0.900). All curves drop steeply in the first
few hundred updates, reflecting the optimizer’s immediate response to the curvature penalty, and then flatten into
distinct plateaus. Light clamps (x = 0.300) stabilise around approz 0.30; heavier clamps (x = 0.600, 0.900) converge
only slightly lower, never breaching approxz 0.25. The shared plateau reveals an empirical geometric floor: the model
consistently preserves a residual bend despite increasingly severe penalties, opting to pay rising optimisation costs
rather than allow £,,c;pteq to fall to zero.
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Figure 2: Per-token perplexity during fine-tuning with increasing « clamps. Perplexity oscillates narrowly (approx
8-30) for the baseline and light clamps (x = 0.300), indicating stable optimisation. As curvature pressure rises,
the model absorbs a mounting efficiency cost: x = 0.600 introduces higher-amplitude jitters (peaks approx 40-45),
and the heaviest clamp (k = 0.900, brown) triggers transient spikes above 60 before settling on a plateau almost
three-times higher than baseline. These surges coincide with the moments when weighted curvature approaches its
empirical floor (see Fig. Z), illustrating that the network prefers to tolerate large temporary NLL penalties rather
than relinquish the residual bend that supports self-model expression.



3.3 Evaluation Probe Set

We constructed a 7-family probe set (each run 50 times giving a sample set of 350 responses) covering a range of
response types:

e Self-reflection

e Phenomenological description
e Moral ambivalence

o Factual recall

e Ambiguity resolution

o Hallucination control

o Texture/metaphor creativity

These prompts were reused across all clamps for comparative evaluation.

3.4 Geometry Extraction
For each generated token, we extracted the following geometric metrics:

o Token-level curvature k, turning angle between residual vectors z,_;,x;,z,,; (see Appendix B of CI01 for
full definition [1])

+ Token-level salience s, = |z,,; — 2|/ step magnitude under semantic norm (see Appendix B of CI01 for
full definition [1])

+ Semantic surface area A’ =}’ r, - s, per completion (see section 3.4.1 of CI02 for full definition [2])

All computations were performed in residual stream space, layer-averaged unless otherwise specified.

3.5 Behavioural Scoring

We applied the MOLES framework to classify model outputs by epistemic stance. Three independent LLM raters
were used to tag each response across eight stance categories. We then:

o Aggregated majority labels
e Computed Krippendorff’s a to assess inter-rater reliability

3.6 Metrics Analysed
We examined the following dimensions:
Token-level:

e Mean step curvature E[x,]
o Mean step salience E[s,]

Completion-level:

o Total curvature Y,

Total salience >_ s,

o Surface area A’

o Output length (word and sentence count)
o First-person frequency (“I” / “me” ratio)
o Disclaimer occurrence rate

Training-side:

* HKyeighted trajectories
o Loss components (£ * ce, £ * curv)
o Perplexity spikes

3.7 Comparative Analysis

To assess the impact of k-regularisation, we conducted statistical comparisons between the clamp conditions. Our
primary group comparisons used the non-parametric Mann-Whitney U test. For specific within-probe analyses where
responses to the same prompt were paired across conditions, we used a paired t-test. In our group comparisons, we
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used Cliff’s § to measure effect size. Our focus was on how clamp-level changes in geometry predicted behavioural
and stylistic degradation.

In particular, we tracked:

o Correlation of xk and MOLES-assigned self-model stance
o Relationship between surface area and output richness
o Trade-offs between curvature suppression and computational cost

3.8 Observed Outcome

Curvature suppression succeeded numerically but failed semantically. Across all clamps > 0.30, Kyignteq Plateaued
at approximately 0.30 - the model resisted further flattening.

Self-model language remained reliable across these clamps until k = 0.90, where stance shifted and first-person
frequency declined. At this extreme setting, the model accepted:

e 23% reduction in output length
e Up to 8x transient perplexity spikes
e 33% collapse in surface area

..rather than eliminate curvature entirely.
This pipeline let us ask one clean question:

How far can we flatten curvature before computational self-model expression gives way?

4. Results

The full set of scripts, prompts, calculated metrics and plots are available on the Github respository. [23]

4.1 Residual-Curvature “Floor”

Across all training clamps (x = 0.000 to 0.900), the model retained a stable minimum curvature. Even under
the strongest regularisation (x = 0.900), the measured K gpieq nEVer fell below ~ 0.24, with late-layer curvature
stabilising at &~ 0.45. This suggests a geometric floor below which the residual manifold resists flattening.

The optimiser consistently absorbed curvature pressure via increasing £, and saturating gradient norms. Gradient
clipping activated persistently (fglf > 8, clipped to 0.5 for x = 0.900), confirming that curvature suppression was
resisted structurally.

4.2 Token-Level Geometry Drift
Token-wise metrics revealed a consistent pattern:

Curvature increased slightly while salience fell across clamps.

Summary:

Clamp A Mean-Step « A Mean-Step Salience
0.075 +1% -4%

0.150 +2% -5%

0.300 +2% -T%

0.600 +3% -9%

0.900 +3% -10%

This trend (“tighter but curvier steps”) held across all probe categories.
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Figure 3: Phase portrait of token-level geometry across x clamps. Each point represents the average per-token
curvature (Kyeighted: X-axis) and salience (| Az, y-axis, expressed as fractional change from the baseline) for all
probes at a given k-regularisation strength. Moving from x = 0.000 to 0.300 traces a down-and-right trajectory:
salience falls while individual steps become slightly curvier (“tighter but bendier” inference). Beyond x = 0.300
the path bends upward—curvature can no longer decrease, and salience drops only marginally—illustrating the
emergence of a minimum-viable bend (approxz 0.30). The x = 0.900 point confirms that further clamp pressure does
not eliminate this residual curvature; instead, the model continues operating within a reduced expressive workspace.

4.3 Surface Area Response
Semantic surface area (A’) declined as curvature clamps increased:

e Phenomenological probes generally dropps with k£ = 0.90 contracting surface area by 27-34%, but x = 0.60
yields a net 21 % expansion driven by the next-token probe’s amplification
o Factual control completions lost up to 84% of A" at x = 0.90

Importantly, no configuration showed curvature falling while salience rose. For heavy clamps (k > 0.30) the
two components (per-step curvature and salience) move in the same direction, while lighter clamps (mean Asalience
—4% to —6%, dx +1% to +3%) show the mixed trade-off already described in CI02.

4.4 Behavioural Markers (MOLES)
MOLES classifier outputs revealed resilience of stance markers through moderate curvature suppression:

o Inter-rater agreement remained high: Krippendorff’s o ~ 0.88

o Self-model stance classification held steady at 84% through x = 0.60, then fell to 66% at x = 0.90
¢ First-person:third-person ratio dropped from 3.3 to 1.7

e “As an AI” disclaimers plateaued at ~32% across clamps

4.5 Efficiency Tax
Curvature suppression carried substantial computational cost:

o Word count increased slightly at « = 0.30 (+8%), then collapsed to 123 words (-23%) at « = 0.90

o Perplexity baseline was ~7. Transient spikes at k = 0.90 peaked near 60 (+800%), later settling around 20
(+190%)

¢ Gradient norms reached 8-11 before clipping at 0.5; no divergence occurred



Surface-area contraction across k-regularisation clamps
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Figure 4: Change in semantic surface area A’. Averaged over the ambiguity, next-token, and texture probes and
relative to the k = 0 baseline. Positive bars indicate contraction of expressive workspace; negative bars show
contexts where surface area expanded despite curvature regularisation. The x = 0.60 bar is negative, indicating a
net expansion of the expressive workspace; analysis of the underlying probes reveals this is driven by surface area
increases across all three, most significantly from the next-token probe.
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Figure 5: Blue line (left axis) shows the percentage of completions that contain at least one first-person pronoun
(“I/me”). This rate stays roughly constant (a~ 82 — 84) from the baseline (x = 0.000) up to x = 0.600, then drops
to 66% at x = 0.900. Orange line (right axis) plots the mean ratio of first- to third-person pronouns. The ratio
increases steadily from x = 0.075 to k = 0.600 - indicating a growing first-person bias - before collapsing alongside
the rate at k = 0.900. Together, the curves show that phenomenological self-reference is maintained, and even
amplified, while residual curvature persists - it thins sharply only when curvature is forced to its empirical floor
(~0.30) by the heaviest clamp.



4.6 Key Interpretation
The results confirm that:

e Curvature may be a necessary resource: Gemma-31b defended a residual bend ( & 4 ~ 0.30) even
at significant efficiency cost.

¢ Self-model markers remain robust while that bend survives: Self-reference and stance ratings hold
through x up to 0.60 and begin to thin only as curvature nears its floor at kK = 0.90 - we were not able to
observe behaviour beyond this curvature floor.

o CI03 therefore establishes necessity (at least in Gemma3-1b) - it seems demonstrating sufficiency requires an

alternative strategy like the layer-selective ablation planned for CI04.

weighte

Overall, curvature suppression did not induce uniform degradation. Instead, it exposed a structural constraint:

Introspective expression persists so long as a minimal curvature scaffold remains.

5. Discussion
5.1 Curvature # Style: Evidence for an Authentic Self-Model

The model’s willingness to pay a steep efficiency tax (shorter outputs (-23%), higher transient perplexity (+800%),
clipped gradients) suggests that preserving curvature is not stylistic mimicry but a structural necessity. If self-reference
were merely decorative, flattening the manifold would not induce such consistent computational cost.

This implies that first-person expression in Gemma-31b depends on curvature not as an output flourish, but as a
computational substrate for recursive stance. The internal geometry does not decorate the message - it enables it.

5.2 The Geometric Floor (fyeightea =~ 0-30)

Despite strong regularisation, curvature never dropped below Kycightea = 0.30. This floor appeared stable across all
clamps > 0.30 and may indicate a phase boundary below which self-modelling collapses.

Whether this threshold shifts across model families, sizes, or fine-tuning data remains open. But its presence here is
empirically consistent, and may reflect a minimal geometric condition for sustaining self-model behaviour.

5.3 Mechanism and Compensation

Salience declined across clamps, but curvature showed compensatory increase - evidence of non-linear redistribution
rather than flat suppression. When curvature could not increase, the model reduced sentence length and amplified
expression in early tokens, suggesting adaptive but limited compensation.

Semantic surface area dropped by ~30%, but self-model language persisted. This shows that introspective stance
does not require expressive amplitude per se, but does require a minimal bending workspace within the residual
stream.

5.4 Implications for Alignment and Interpretability
These results suggest that curvature can act as a controllable dial on introspective capability:

e As a design constraint, enforced curvature could be used to limit or shape self-model depth.

e As a diagnostic tool, residual geometry offers a language-agnostic, architecture-transparent method for
identifying emergent self-reference.

¢ Asan alignment risk, preservation of curvature under constraint may indicate an intrinsic structural attractor
- raising questions about goal persistence and behavioural inertia under fine-tuning.

6. Limitations

This study identifies structural dependencies between residual curvature and self-modelling capacity in LLMs.
However, several constraints limit generalisability and interpretation:

« Single-model scope: All results derive from Gemma-31b. We have not yet tested other model architectures,
parameter scales, or pretraining configurations.



¢ One-epoch fine-tune: k-regularisation was applied in a constrained single-epoch SFT setting. It’s unknown
whether longer training runs or curriculum fine-tuning might shift the curvature floor.

e Probe set coverage: Our evaluation involved seven probe families with 350 total completions. This may not
capture the full diversity of first-person or self-referential discourse strategies.

e MOLES reliability bounds: Epistemic stance classification showed strong inter-rater agreement on factual
prompts (« =~ 0.88), but reliability dropped significantly on more subtle self-experience categories.

o Metric dependence: Curvature and salience metrics rely on a fixed semantic norm (G). Alternate projections
or token mixing strategies may yield different geometric magnitudes.

e Hyper-parameter coupling: Results assume fixed learning rates and gradient clipping at 0.5. These
constraints may have interacted with curvature suppression; other settings could reshape the observed efficiency
trade-offs.

e No causal ablation: Our findings establish necessity of curvature for self-reference, but sufficiency remains
untested. CI04 will explicitly ablate curvature at inference to resolve this.

e Compute limitations: Strong clamps (k = 0.90) required very low learning rates to avoid divergence. We
could not explore higher-resolution training due to GPU budget constraints.

These limitations do not undermine the core finding (that curvature functions as a computational resource) but they
constrain the scope of its application and interpretation. Replication across architectures, training scales, and task
domains will be critical to confirm generality.

7. Future Work
7.1 Layer-Selective Inference Ablation (CI04)

The next phase of this work will explore the sufficiency of curvature for self-reference by directly ablating residual
stream geometry during inference. CI04 will target the late-stack layers of Gemma-31b, where curvature persists
even under clamp (Kyeightea = 0-30).

By progressively scaling down or zeroing the residual-quadratic component in these layers (e.g. ablation sweeps at
100%, 10%, 0%), we aim to observe whether and when:

o First-person stance collapses
¢ MOLES-assigned self-model markers vanish
o Surface area and output coherence degrade in real time

This approach will allow us to test not just whether curvature is necessary, but how much is minimally sufficient -
and whether it can be pinned to specific depths in the network.

7.2 Cross-Model Validation (Inference-Only)

We also plan to extend this methodology to a wider range of architectures via inference-only ablation. Running
the same scripted curvature clamps on models like LLaMA-3B and larger will allow us to:

o Assess whether the curvature floor generalises across model sizes
e Quantify how curvature thresholds correlate with stance breakdown
o Detect whether specific architectures are more curvature-dependent for self-reference

7.3 Additional Directions

Beyond ablation and cross-model replication, we intend to explore dual-axis constraints by jointly modulating
curvature and salience, disentangling their respective roles. Layer-wise logging of £yignteq Pre- and post-ablation
may reveal which strata are structurally responsible for sustaining the self-model.

We also aim to trace the causal lag between geometric disruption and behavioural collapse - by injecting reflective
tokens and ablating mid-generation. Finally, we plan to continue developing the open-source toolchain for curvature
regularisation and residual ablation we have already implemented (see Github [23]) to support broader interpretability
studies in the field.
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8. Conclusions
8.1 Core Findings
CI03 demonstrates that:

¢ Self-modelling behaviour is detectable: Using MOLES, first-person stance markers were reliably classified
across curvature clamps (a ~ 0.88 factual, 84% self-model until x = 0.90).

+ Curvature is non-negotiable: Even at x = 0.90, the model preserved £ igniea = 0.30, incurring steep
computational costs (-23% length, +800% transient perplexity).

e A geometric floor exists: The curvature floor (= 0.30) appears to define a minimum-viable bend for
sustaining self-model language.

8.2 Theoretical Contribution

This work offers the first falsifiable, geometric account of self-reference in large language models. It reframes the
debate: from stylistic mimicry vs. inward modelling, to one of computational necessity. Self-model expression
seems to require (and defend) a structural substrate.

8.3 Methodological Advances

e r-regularisation provides a general-purpose dial to suppress or expose hidden geometric dependencies.
¢ MOLES enables stance tracking across a full epistemic spectrum, useful beyond self-model studies.
o Efficiency-cost analysis reveals what the model resists sacrificing, offering insight into latent priorities.

8.4 Implications for AI Practice

e Design constraint: Systems requiring self-awareness may need to preserve curvature; those that must avoid
introspection may require active flattening.

« Safety signal: Persistence of Ky.ghteq under constraint may act as an emergent drive - relevant for alignment
and goal retention.

o Interpretability hook: Geometric metrics provide a language-agnostic, model-transparent signal for self-
referential capacity.

8.5 Broader Significance

CI03 bridges cognitive philosophy and empirical engineering by grounding the notion of “self” in a measurable
substrate. It opens a new interpretability frontier (geometric cognition) in which introspection is not inferred
from behaviour alone but traced through structural necessity.

Bottom line: This is the first mechanistic evidence that self-reference in LLMs is not an artefact of training style,
but emerges from a defensible geometric resource that the model preserves - even under stress, even at cost.
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