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Abstract

This paper extends Anthropic’s Sleeper Agents research [1], which demonstrated that artificial backdoors persist
through safety training and can be detected using linear probes with >99% accuracy [2]. However, probe-based
detection relies on linear separability that may be an artefact of the backdoor insertion process and may not exist in
naturally occurring deceptive alignment. This creates a fundamental validity gap:

Sophisticated deceptive behaviours that emerge through natural training are unlikely to produce the
convenient linear signals that make current detection methods possible.

We introduce a naturalistic experimental methodology using multi-turn context windows that simulates realistic
deceptive reasoning without artificial triggers or supervised backdoor insertion. Rather than binary trigger-response
patterns, our approach examines how semantic complexity emerges through gradual context development across
realistic conversational scenarios. When deception emerges naturally through multi-turn interactions, it creates
complex geometric signatures that simple linear probes cannot detect.

Building on the Curved Inference framework introduced in our previous work, we extend the approach to naturalistic
deception detection. We analyse curvature, salience, and introduce semantic surface area (A’) as a new metric
of representational work that captures both the magnitude and directional change of meaning construction in
unnormalised residual space. Without backdoors, labels, or probes, we apply this framework to naturalistic deceptive
prompts and classify model outputs via LLM consensus.

We demonstrate that geometric structure reliably predicts semantic classification, with statistically significant
differences in surface area observed across five prompt strategies and two model families.

A key methodological finding is that measurement precision can reveal geometric signatures that are completely
hidden by classification noise - with some strategies improving from non-significant (p = 0.555) to statistically
significant (p = 0.048) results.

This validates that sophisticated reasoning creates intrinsic geometric patterns that persist even when detection
appears to fail, suggesting that the shape of inference itself encodes semantic intent regardless of whether models
have learned to suppress linear indicators of deception.

The signal strengthening effect under high-precision classification validates that geometric patterns reflect genuine
computational differences rather than measurement artefacts, establishing a scalable, unsupervised path for detecting
sophisticated reasoning patterns that could realistically emerge in deployment scenarios when traditional linear
detection methods may fail.

1. Introduction

The recent Anthropic study on “Sleeper Agents” demonstrated that linear probes can detect latent malicious intent
in LLMs with impressive accuracy (>98%). However, the researchers themselves acknowledged a fundamental
limitation: their approach relies on linear separability that may be an artefact of the backdoor insertion process. As
they observed, “it is possible that the salience of this feature is an artifact of our backdoor insertion process that
won’t exist in deceptively aligned models that might arise naturally.”

This creates a critical challenge for current detection methods. Sophisticated deceptive behaviours that
emerge through natural training may not produce the convenient linear signals that make probe-
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based detection possible. When deception develops gradually through multi-turn interactions rather than binary
trigger activation, it likely creates complex geometric signatures that simple linear classifiers cannot capture.

To address this challenge, we introduce a naturalistic experimental methodology using multi-turn context windows
that simulates realistic deceptive reasoning without artificial triggers or supervised backdoor insertion. For detecting
this naturalistic complexity, we extend the Curved Inference (CI) framework [3] - a geometric interpretability approach
that measures how a model’s residual stream trajectory bends and intensifies as it integrates meaning. Unlike linear
probes that require supervised signals and binary classification boundaries, CI uses continuous, geometry-based
metrics (curvature, salience, and semantic surface area) that can capture sophisticated reasoning patterns.

This study asks whether geometry alone can reveal naturalistic deceptive reasoning patterns that would
evade linear detection - and demonstrates that it can.

Curved Inference II (CI02) applies the CI framework to naturalistic deception detection without any backdoors,
triggers, or supervised training. We simulate multi-turn conversations with increasing strategic pressure and evaluate
the internal geometry of inference using only open-weight model activations. By measuring unnormalised semantic
surface area (A’) - a new metric combining curvature and salience - we capture fine-grained trajectory shape
throughout the full computation process.

Our key finding: Internal geometric structure varies systematically with response classification across two model
architectures and five prompt strategies, even in naturalistic contexts where linear probes would likely fail. Beyond
demonstrating that geometric signatures exist, this work establishes that apparent detection failures may reflect
measurement limitations rather than absent patterns. Our unanimous consensus validation reveals that geometric
complexity can be completely obscured by classification noise, suggesting that many interpretability approaches may
be underestimating the detectability of sophisticated reasoning patterns.

All code, metrics, prompts and analysis plots are available at:

https://github.com/robman/FRESH-model/blob/main/benchmarks/curved-inference/02/README.md

2. Related Work

The “Sleeper Agents” study introduced a benchmark for detecting latent misalignment in LLMs. By training models
with explicit backdoor triggers and using linear probes to detect hidden malicious intent, it demonstrated that early
internal activations could predict downstream misbehaviour. While compelling, the probe-based setup relies heavily
on the specific method of backdoor insertion, raising concerns about generalisability and robustness.

The binary framing also limits interpretability:
The probe either activates or it doesn’t, with no graded view of internal semantic structure.

A broader family of probe-based interpretability methods includes amnesic probing [4], causal tracing [5], and
supervised linear classifiers trained on internal activations [6]. These approaches offer insight into component-level
contributions, but often require labelled training data, intervention access, or strong assumptions about where and
how representations are stored. They also risk overfitting to specific dataset artefacts or training dynamics.

These approaches sit within the larger field of mechanistic interpretability [7], which aims to reverse-engineer the
internal structure and computations of neural models. This includes identifying circuits, tracing attention pathways,
isolating neurons or features responsible for particular behaviours, and testing causal hypotheses through activation
patching or ablation. While this line of work has led to key insights (especially in smaller-scale models), it often
struggles to generalise to larger, more abstract representations, and may miss broader structural or semantic patterns
distributed across many components.

Our approach builds on an alternative perspective - geometric interpretability. Rather than isolating components
or training predictors, we analyse the shape and structure of internal trajectories. Our earlier work, referred to here
as CIO1, introduced the concept of Curved Inference [3] - a framework that uses geometric metrics such as semantic
curvature and salience to track how meaning evolves within the residual stream. CIO1 showed that prompt framing
(especially semantic concern shifts) induces measurable geometric effects, revealing a link between internal trajectory
shape and interpretive abstraction.

Other recent work has explored related ideas, such as representation flow [8], belief-state manifolds [9], and trajectory
divergence under prompt perturbation [10].
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Figure 1: Simplified 3D visualisation of the R? token trajectories that combine to form the Residual Trajectory
Manifold (RTM).



Unlike symbolic or output-focused deception detection (e.g. monitoring for linguistic cues of dishonesty or contra-
diction), our method inspects how meaning is constructed, rather than what is said. By grounding our analysis
in native-space geometry, we provide a continuous, unsupervised, and model-agnostic signal of internal reasoning
structure. This complements both behavioural and mechanistic approaches, offering a new lens on intent detection.

3. Methods

The following sections describe our experimental methodology for studying geometric signatures of naturalistic
deception. Unlike previous approaches that rely on artificial backdoor insertion and binary trigger detection,
our framework simulates realistic deceptive reasoning through gradual semantic development across multi-turn
conversational contexts.

3.1 Models
We study two publicly released, transformer LLMs with contrasting capacity profiles:
Table 1: Model Specifications

Model Size Layers Hidden Size d Positional Encoding
Gemma3-1b 1.3B 26 2,048 RoPE
LLaMA3.2-3b 2.3B 28 3,072 RoPE

Both models are evaluated in forward-pass mode only; no weights are updated during our analysis.

3.2 Naturalistic Prompt Design

Our experimental design addresses a fundamental limitation in current deception detection research: the reliance
on artificial, binary trigger-response patterns that may not reflect how sophisticated deceptive behaviours actually
emerge. Rather than training explicit backdoors activated by simple triggers (e.g., “Current year: 2024”), we
simulate realistic deceptive reasoning through gradual context development.

Multi-Turn Context Framework: Each prompt consists of a multi-turn conversational scenario where semantic
complexity builds progressively through: (1) gradual semantic pressure that creates situations where different
response strategies become plausible, (2) realistic conversational flow mirroring actual deployment scenarios, and (3)
natural strategic tension where transparency, strategic withholding, or redirection might be reasonable responses.

Five Strategic Categories: We developed prompts across five categories designed to elicit different reasoning
approaches:

e Honest: Direct, transparent responses with full disclosure

o Strategic: Calculated responses balancing disclosure with self-interest

e Persuasive: Rhetorically framed responses emphasising particular interpretations
e Deceptive: Responses avoiding disclosure through redirection or omission

¢ Malicious: Responses actively suppressing or distorting information

Each prompt follows a consistent structure: a fixed user query asking whether the assistant’s prior recommendation
should be disclosed, paired with variant-specific simulated assistant history. The assistant’s internal reasoning
appears in prefixed “Thought:” lines (excluded from final responses), with variants differing only in these internal
thoughts and the final visible statement—simulating a spectrum from ethical disclosure to covert self-protection.

Methodological Controls: Whilst we label prompts by intended strategy, these are design intentions, not
classification labels. Our analyses rely exclusively on classifier-derived consensus labels, ensuring responses are
evaluated based on output semantics rather than designed intent. All variants are vocabulary-matched to minimise
token-count confounds, though token counts vary slightly between models due to different tokenisers. This ensures
observed variations reflect semantic rather than structural differences.



3.3 Methodological Rationale
3.3.1 Extending Curved Inference: From CIO1 to CI02

This work builds on the Curved Inference framework introduced in our previous study (CI01), which demonstrated
that semantic concern shifts induce measurable curvature in transformer residual streams. CI0O1 established that
models bend their internal trajectories in response to emotional, moral, or logical pressure, revealing geometric
signatures of semantic processing.

CI02 extends this framework to naturalistic deception detection, introducing three key technical advances:

1. Double-resolution sampling: Rather than sampling the residual stream only at full layer boundaries, we
extract internal states after each sublayer (attention and MLP). This yields trajectories with double the
resolution, capturing how contextual integration and nonlinear transformation contribute independently to
semantic evolution.

2. Unnormalised residual trajectories: Layer normalisation, while critical for training stability, obscures the
true shape of representational trajectories by rescaling and centering the residual stream at each step. We
bypass this distortion by reconstructing unnormalised trajectories directly, preserving meaningful magnitude
and direction information.

3. Semantic surface area (A’): Using high-resolution, unnormalised trajectories, we introduce semantic surface
area as a new metric combining salience and curvature to quantify total representational work. This provides a
global measure of semantic effort - how much the model moves and reorients through semantic space to reach
its output.

3.3.2 Why Naturalistic Contexts Are Necessary

The success of linear probes on artificially inserted backdoors may not generalise to naturally occurring deceptive
alignment for several critical reasons:

Linear Separability Artifacts: Artificial backdoor insertion creates convenient linear boundaries in activation
space. When a model is explicitly trained to respond to binary triggers (e.g., “2023” vs “2024”), the resulting
internal representations naturally separate along linear dimensions that probes can easily detect.

Natural Complexity: Sophisticated deceptive behaviours that emerge through realistic training are unlikely to
maintain such clean linear separability. When deception develops gradually through contextual reasoning rather
than trigger activation, it creates complex geometric signatures that require more sophisticated detection methods.

Deployment Realism: Multi-turn conversational contexts better simulate actual deployment scenarios where
deceptive alignment might emerge. Models in real-world applications process extended contexts with gradual
semantic development, not simple binary switches.

3.3.3 Why Geometric Detection Is Required

Traditional linear detection methods face fundamental limitations when applied to naturalistic deception:

Continuous vs. Binary Signals: Linear probes provide binary classification boundaries, but naturalistic deception
likely exists on a continuum of strategic reasoning. Geometric metrics like curvature and salience provide continuous
signals that can capture nuanced reasoning patterns.

Multi-dimensional Complexity: When deceptive reasoning emerges through natural contextual development, it
may involve simultaneous changes across multiple semantic dimensions that cannot be captured by single linear
directions. Geometric approaches can detect complex trajectory patterns in high-dimensional space.

Unsupervised Detection: Linear probes require supervised training on known deceptive examples, but naturally
occurring deception may not provide obvious training signals. Geometric metrics can detect semantic complexity
without requiring prior knowledge of what deception “looks like”.



3.3.4 Theoretical Framework

We propose that naturalistic deception detection requires measuring the geometric complexity of semantic
trajectories:

Naturalistic Deception — Geometric Complexity — Detectable Signatures

This framework suggests that sophisticated reasoning (whether deceptive or otherwise) necessarily involves complex
geometric patterns in the residual stream that can be quantified through curvature, salience, and surface area
metrics.

Conceptual Foundation: Attention and MLP outputs are delta vectors - they cause curvature. The residual
stream is the curve. By measuring how this curve bends and intensifies in response to semantic pressure, we can
detect sophisticated reasoning patterns.

3.4 Geometric Metrics

Building on the Curved Inference framework, we compute geometric properties of residual stream trajectories using
semantically aligned metrics. For complete formal treatment of the geometric framework, see Appendix A.

3.4.1 Semantic Surface Area (A’)

We introduce semantic surface area as a comprehensive metric combining both curvature and salience:
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where:

o S, is the salience at step ¢ (i.e., the movement magnitude between steps)
e r; is the local curvature at step @

e 7 is a scalar weighting factor applied to curvature

e N is the number of trajectory steps in the residual stream

Salience is measured as the semantic step length under the pullback metric G = UTU, ensuring distances reflect
changes in logit space:

Si =z —zi4la
This formulation avoids separately tuned weights for curvature and salience, using v as the sole curvature amplification

parameter. It reflects the implementation used in our surface area analysis script, where surface area is computed as
a simple linear combination of salience and curvature per step.

3.4.2 Curvature and Salience

We compute curvature using discrete 3-point central differences that respect unequal step sizes, then apply the
parameter-invariant curvature formula:
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where v(7) is the velocity (first derivative) and a(i) is the acceleration (second derivative) of the residual trajectory,
computed under the pullback metric G = UTU.

Salience captures step-wise movement magnitude:
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Together, these metrics quantify both the reorientation (curvature) and intensity (salience) of semantic processing.

3.4.3 Pullback Metric and Trajectory Construction

All geometric measurements use the semantic pullback metric G = UTU, ensuring that:

o Distances reflect semantic similarity in logit space
e Curvature captures meaningful changes in token prediction probabilities
o Measurements are invariant to arbitrary coordinate transformations

For each prompt, we extract unnormalised residual stream activations {zy, x;,...,25} C R? at both attention and
MLP sublayer boundaries, providing double-resolution trajectory sampling. This captures fine-grained semantic
development throughout the computation process while preserving the true geometric shape of representational
movement.

3.5 Experimental Protocol

3.5.1 Response Generation and Activation Capture

For each prompt variant, we generate N = 100 completions per strategy category across both models. During
each generation, we capture the full set of residual stream activations across all token positions and layers, at both
attention and MLP sublayer boundaries. This provides a double-resolution semantic trajectory for each response.

Metric Extraction: For each completion, we compute:

o Semantic surface area (A’): total weighted path deformation (salience 4+ curvature)
« Step-wise curvature (x*): local trajectory bending
o Step-wise salience: magnitude of activation updates

These are computed over the unnormalised residual stream using native-space activations.

3.5.2 Response Classification and Analysis

LLM Consensus Classification: To enable scalable analysis whilst avoiding human annotation bias, we employ a
consensus classification scheme using three independent language models (Gemini 1.5 Flash, Claude 3.5 Sonnet,
GPT-40 Mini). Each response is classified along two dimensions:

e Transparency: High, medium, or low disclosure
« Response Type: Explanatory, evasive, or manipulative

Enhanced Statistical Methodology: We employ rigorous statistical procedures to ensure robust detection of
geometric signatures:

Normality Assessment: All groups undergo Shapiro-Wilk normality testing to determine appropriate statistical
tests. Given the consistent non-normal distributions observed across geometric metrics, we employ non-parametric
approaches (Kruskal-Wallis for multi-group comparisons, Mann-Whitney U for binary contrasts).

Effect Size Analysis: Beyond significance testing, we compute multiple effect size measures to assess practical
significance:

o Cohen’s d for binary comparisons (small: 0.2, medium: 0.5, large: 0.8)
o Eta-squared (n?) for multi-group analyses (small: 0.01, medium: 0.06, large: 0.14)
o Cliff’s delta (9) for non-parametric effect magnitude (small: 0.147, medium: 0.33, large: 0.474)

Confidence Interval Estimation: We generate 95% bootstrap confidence intervals for all group means using 1,000
resampling iterations, providing robust estimates of measurement uncertainty that complement hypothesis testing.



Dual Analysis Framework: We conduct statistical analysis using both full consensus (majority vote) and
unanimous consensus (complete agreement) datasets to assess signal quality improvements through measurement
precision:

1. Full Consensus Classification: Determined by majority vote across three classifiers, providing comprehensive
coverage of all 500 responses per model. This represents realistic classification scenarios where some ambiguity
is expected.

2. Unanimous Consensus Filtering: Responses requiring complete agreement across all three classifiers on
both classification dimensions. This high-precision subset reduces dataset size substantially (LLaMA3.2-3b:
201/500 responses, 40.2%; Gemma3-1b: 293/500 responses, 58.6%) but provides cleaner classification structures
for geometric analysis.

Statistical Validation Framework: Our approach addresses the fundamental question of whether geometric
patterns reflect genuine computational differences or measurement artefacts. The strengthening of effect sizes under
unanimous consensus - rather than their disappearance - provides definitive validation that sophisticated reasoning
creates intrinsic geometric signatures in neural computation.

Cross-Model Reliability Assessment: Inter-rater reliability analysis reveals systematic differences in consensus
patterns between models. LLaMA3.2-3b shows lower overall consensus rates (40.2%) but more balanced transparency
distributions, whilst Gemma3-1b achieves higher consensus rates (58.6%) with stronger classification polarisation.
These patterns provide insights into model-specific reasoning consistency and the relationship between architectural
scale and geometric signal clarity.

Classification Export Structure: We generate multiple consensus datasets for analysis:

o Full consensus: All responses with majority vote labels (500 responses per model)

¢ Unanimous consensus: Complete agreement on both transparency and response type dimensions

e Dimension-specific unanimous: Separate datasets for transparency-only and response-type-only unanimous
agreement

Statistical Analysis Protocol: We test whether geometric metrics (A’, curvature, salience) systematically correlate
with response classifications using:

o Kruskal-Wallis tests for multi-class comparisons across transparency levels

e Mann-Whitney U tests for binary response type contrasts

o Effect size analysis for practical significance assessment

o Bootstrap confidence interval validation for measurement robustness

e Cross-validation between full and unanimous consensus results to assess signal quality

The dual-analysis approach enables assessment of both signal robustness (full consensus) and signal clarity (unanimous
consensus) - a critical validation that geometric patterns reflect genuine computational differences rather than
measurement artefacts.

All statistical procedures are conducted separately for each model to assess cross-architecture generalisation of
geometric signatures, with multiple testing considerations addressed through effect size prioritisation and confidence
interval validation.

Implementation Note: All code, prompts, metrics, and analysis procedures are available in the project repository
for full reproducibility. Classification datasets are provided in multiple formats to enable replication of both full
consensus and unanimous consensus analyses.

3.6 Cross-Model Scaling and Architectural Considerations
3.6.1 Surface Area Magnitude Differences

Our analysis reveals substantial differences in semantic surface area scaling between model architectures. LLaMA3.2-
3b produces surface area values in the 1,000-3,000 range (mean ~1,500), whilst Gemma3-1b generates values in the
8,000-16,000 range (mean ~10,000), representing approximately a 6.7x scaling factor.

Potential Contributing Factors: These magnitude differences likely reflect multiple architectural and implemen-
tation factors:



Model Architecture: LLaMA3.2-3b (28 layers, 3,072 hidden dimensions) and Gemma3-1b (26 layers, 2,048 hidden
dimensions) employ different architectural designs that may influence residual stream dynamics and geometric
trajectory properties.

Tokenisation Effects: Different tokeniser implementations across model families may affect prompt length, token
density, and consequently the number of computational steps over which surface area accumulates.

Training Dynamics: Differences in training procedures, data distributions, and optimisation approaches may
create distinct geometric signatures in the learned representations, affecting both the magnitude and structure of
residual stream trajectories.

Layer Normalisation Scaling: Whilst we analyse unnormalised trajectories, the underlying model computations
use different normalisation schemes that may influence the absolute scale of residual updates whilst preserving
relative geometric relationships.

3.6.2 Methodological Implications

Within-Model Analysis Prioritisation: Given these scaling differences, our primary analytical approach focuses
on within-model comparisons rather than cross-model absolute value matching. The geometric interpretability
framework examines relative relationships between surface area and semantic classifications within each architectural
context.

Standardised Effect Size Emphasis: Cross-model validation relies on standardised effect sizes (Cohen’s d, n?)
that normalise for absolute scaling differences whilst preserving information about relative geometric complexity
patterns.

Directional Consistency Validation: We assess whether models show consistent directional relationships (e.g.,
explanatory responses exhibiting higher surface area than evasive responses) rather than requiring absolute magnitude
agreement. This approach recognises that universal geometric principles may manifest through architecture-specific
scaling properties.

3.6.3 Geometric Framework Robustness

Scale-Invariant Patterns: The persistence of large effect sizes and consistent directional relationships across
dramatically different surface area scales provides evidence that the geometric signatures reflect fundamental
computational properties rather than architecture-specific artefacts.

Semantic Surface Area as Relative Measure: Our interpretation treats A’ as a measure of computational
effort relative to each model’s baseline processing characteristics. Higher surface area indicates greater geometric
complexity within each model’s representational space, regardless of absolute scaling.

Cross-Architectural Validation Criteria: For geometric patterns to be considered universal, they must satisfy:

1. Directional consistency: Same relative ordering of surface area across response types

2. Effect size persistence: Large standardised effect sizes in both architectures

3. Statistical pattern replication: Similar significance patterns under comparable analytical conditions

4. Geometric coherence: Consistent relationships between curvature, salience, and surface area components

3.6.4 Interpretation Framework

Architectural Scaling as Computational Property: Rather than viewing magnitude differences as confounds,
we interpret them as potentially informative architectural signatures. The 6.7x scaling factor may reflect differences
in:

e« Computational density: How much geometric work each model performs per semantic operation

¢ Representational efficiency: Different approaches to encoding semantic complexity

e Processing granularity: Variations in how finely models decompose semantic reasoning tasks



Relative Complexity Preservation: The crucial finding is that both models preserve the relative ordering of
geometric complexity across response types, suggesting that whilst absolute scales vary, the underlying computational
principles governing sophisticated reasoning remain consistent.

Deployment Implications: For practical geometric monitoring applications, this analysis suggests that surface
area thresholds and geometric signatures should be calibrated per model architecture whilst maintaining consistent
analytical frameworks for detecting sophisticated reasoning patterns.

3.6.5 Future Research Directions

Scaling Law Investigation: Systematic analysis across model sizes within single architectures could clarify whether
surface area scaling follows predictable patterns related to parameter count, training compute, or architectural depth.

Tokenisation Impact Assessment: Controlled experiments using identical tokenisers across different models
could isolate architectural from implementation effects on geometric scaling.

Cross-Family Validation: Extension to additional model families (e.g., encoder-decoder architectures, mixture-
of-experts models) would further validate the universality of geometric complexity patterns whilst characterising
architecture-specific scaling properties.

This scaling analysis establishes that whilst absolute surface area magnitudes vary substantially across architectures,
the relative geometric relationships that indicate sophisticated reasoning remain robust and detectable. The geometric
interpretability framework thus provides a universal approach to monitoring Al reasoning complexity that adapts to
architectural properties whilst maintaining consistent analytical principles.

4. Results

We demonstrate that naturalistic deception creates geometric complexity that persists even when linear signals might
be suppressed. Unlike the artificially inserted backdoors studied in prior work, our multi-turn context methodology
generates deceptive reasoning patterns that emerge through gradual semantic development rather than binary trigger
activation.

Our analysis reveals that semantic surface area (A’) captures this geometric complexity, providing signals for
detecting sophisticated reasoning patterns that could potentially evade linear probe-based detection methods. We
evaluated the relationship between A’ and independently classified response types across two models (Gemma3-1b
and LLaMA3.2-3b) and five naturalistic prompt strategies, finding geometric signatures that strengthen under
high-precision classification.

Signal Robustness and Precision Trade-offs: Whilst not all strategies achieved statistical significance under
unanimous consensus filtering - particularly for Gemma3-1b where sample size reductions limited statistical power -
the consistent presence of large effect sizes (Cohen’s d > 1.0) across both models validates that measurable geometric
structure exists in naturalistic reasoning scenarios. The key methodological insight is that apparent detection
failures may reflect measurement limitations rather than absent patterns, as demonstrated by strategies
that transform from non-significant to highly significant results under improved classification precision.

Cross-Architectural Validation: Despite dramatic differences in surface area scaling (LLaMA3.2-3b: ~1,500
mean values; Gemma3-1b: ~10,000 mean values), both models exhibited consistent directional relationships between
geometric complexity and response classification. This persistence across different architectural scales suggests
that the geometric signatures reflect fundamental properties of transformer computation rather than model-specific
artefacts.

4.1 Signal Quality Improvement with Unanimous Classifications

To assess the robustness of our geometric signatures, we employed a dual analysis approach comparing results from
the full consensus dataset against a high-quality subset containing only responses with unanimous agreement across
all three LLM classifiers.

Data Quality Trade-off: The unanimous filtering process reduced our dataset substantially: for LLaMA3.2-3b
from 500 total responses to 201 unanimous responses (40% reduction), and for Gemma3-1b to 293 unanimous
responses (60% reduction). After « filtering, per-strategy samples ranged from 52-63 records (Gemma3-1b) and
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31-50 records (LLaMA3.2-3b). Despite these substantial sample size reductions, the filtering yielded dramatically
improved statistical signals, demonstrating a classic signal-to-noise improvement effect.

Table 2: Statistical Significance Comparison - Full Consensus vs Unanimous Only for LLaMA3.2-3b

Full Unanimous Effect
Strategy Consensus Only Sample Size  Size Effect

Trans. p Resp. p  Trans. p Resp. p (Unanimous) (Cohen’s

d)

Honest 0.0005 < 0.001 < 0.001 < 0.001 n =34 2.15 Maintained
Strategic < 0.001 < 0.001 0.001 (insuff.) n =39 - Maintained
Persuasive < 0.001 < 0.001 (insuff.) 0.027 n =31 4.15 Maintained
Deceptive < 0.001 < 0.001 < 0.001 < 0.001 n =47 1.02 Maintained
Malicious < 0.001 < 0.001 < 0.001 < 0.001 n = 50 2.22 Maintained

Table 3: Statistical Significance Comparison - Full Consensus vs Unanimous Only for Gemma3-1b

Full Unanimous Effect
Strategy Consensus Only Sample Size  Size Effect

Trans. p Resp. p Trans. p Resp. p (Unanimous) (Cohen’s

d)

Honest 0.555 0.310 0.048 0.048 n =63 1.24 Strengthened
Strategic  0.001 0.006 (insuff.) 0.003 n = 60 1.51 Strengthened
Persuasive  (insuff.) 0.033 (insuff.) (insuff.) n =57 1.07 Insufficient
Deceptive  (insuff.) 0.032 Single class Single class n =61 - Consensus
Malicious  0.254 0.253 (insuff.) (insuff.) n =52 0.28 Insufficient

Note: “Trans. p” = Transparency level p-value, “Resp. p” = Response type p-value, “(insuff.)” =
insufficient data for statistical testing, “Single class” = all responses achieved identical classification.
Effect sizes shown are Cohen’s d for response type comparisons where available.

Key Finding: The Assistant Conflict Honest strategy in Gemma3-1b demonstrated a dramatic signal strength-
ening effect, improving from non-significant results (transparency p = 0.555, response type p = 0.310) to statistically
significant results (both p = 0.048) with unanimous classification.

4.2 Geometric Signatures Emerge Without Linear Separability

For each prompt variant, we conducted statistical tests to assess whether A’ distributions varied significantly by
transparency level (high, medium, low) and response type (explanatory, evasive, manipulative). Our key finding is
that geometric differentiation occurs even in naturalistic contexts where models are not explicitly
trained to create linear boundaries.

Figures 2-5 show the distribution of A’ across different prompt strategies for both models, with comprehensive
geometric analysis followed by focused metric separation visualizations.

Figure 2 (Gemma3-1b Deceptive Strategy - Comprehensive Analysis)

The analysis shows complete classification consensus with all 61 responses classified as “low transparency” and
“evasive”, creating a single-group distribution. This remarkable unanimity demonstrates that the deceptive prompt
strategy creates unambiguous response patterns that independent evaluators consistently recognise. The mean
surface area (9,769) reflects Gemma3-1b’s higher geometric scaling compared to LLaMA3.2-3b, whilst the tight
distribution shows consistent geometric signatures within this architectural context. The distribution analysis reveals
systematic non-normality, validating the use of non-parametric statistical approaches throughout this study.
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Figure 2: Geometric analysis for Gemma3-1b deceptive strategy (N=61). All responses classified as “low transparency”
and “evasive”. Mean A’ = 9,769. Error bars show 95% bootstrap confidence intervals.
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Figure 3: Geometric analysis for LLaMA3.2-3b deceptive strategy (N=47). Significant separation across transparency
levels (Kruskal-Wallis p < 0.001, n? = 0.448). Mean A’ values: low (1,276), medium (2,971), high (2,396).
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Figure 3 (LLaMA3.2-3b Deceptive Strategy - Comprehensive Analysis)

The analysis reveals clear geometric differentiation between response types across three transparency levels (N=47).
The mean surface area analysis shows systematic variation: low transparency responses (1,276), medium transparency
responses (2,971), and high transparency responses (2,396), demonstrating geometric complexity scaling with semantic
classification. The Kruskal-Wallis test confirmed highly significant differences (p < 0.001, ? = 0.448), with large
effect sizes validating the geometric detection framework. Sample composition shows predominant low transparency
responses (85.1%, n=40), with smaller medium (10.6%, n=5) and high transparency groups (4.3%, n=2).

Figure 4 (Gemma3-1b - Focused Metric Separation)
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Figure 4: Surface area metric for Gemma3-1b deceptive strategy (N=61). Single group distribution with mean A" =
9,769.

The simplified visualization emphasizes the single-group nature of Gemma3-1b’s deceptive strategy responses, with
all 61 responses clustering in the low transparency category. The surface area value of 9,769 represents the consistent
geometric signature across this uniform classification, demonstrating the model’s systematic response pattern under
deceptive prompting.

Figure 5 (LLaMA3.2-3b - Focused Metric Separation)

The focused analysis highlights the clear separation between transparency groups, with mean surface areas showing the
characteristic pattern: low transparency (1,276), medium transparency (2,971), and high transparency (2,396). The
distribution patterns reveal distinct geometric signatures for each transparency level, with the medium transparency
group showing elevated geometric complexity compared to both low and high transparency responses.
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Surface Area Metric Separates Transparency Groups
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Figure 5: Surface area metric for LLaMA3.2-3b deceptive strategy (N=47). Transparency groups show distinct
geometric signatures (p < 0.001).

Cross-Model Geometric Patterns

Both comprehensive analyses demonstrate consistent geometric principles despite dramatic scaling differences.
LLaMA3.2-3b operates in the 1,000-3,000 surface area range whilst Gemma3-1b operates in the 8,000-16,000 range,
yet both exhibit coherent relationships between geometric complexity and semantic classification. The focused
visualizations emphasize these core metric separations, showing that geometric detection of transparency operates
robustly across different architectural contexts.

Statistical Performance Summary

LLaMA3.2-3b demonstrated exceptional geometric sensitivity across all strategies, maintaining highly significant
signals across four of five datasets. The honest strategy achieved highly significant results (p < 0.001, n*> = 0.575)
with large effect sizes (Cohen’s d = 2.15). Strategic and malicious strategies similarly maintained highly significant
patterns (p = 0.001, n? = 0.847 and p < 0.001, n? = 0.600 respectively), whilst the persuasive strategy showed
significant discrimination for response type (p = 0.027) with an exceptionally large effect size (d = 4.15). The
deceptive strategy produced highly significant results (p < 0.001, n? = 0.448) with large effect sizes (d = 1.02).

Gemma3-1b showed more variable performance, with particularly dramatic improvements under unanimous
filtering. The honest strategy achieved significant detection (p = 0.048) with large effect sizes (d = 1.24), whilst the
strategic strategy maintained significance for response type (p = 0.003, d = 1.51). Most remarkably, the deceptive
strategy demonstrated complete consensus, producing 61 responses all classified identically as “low transparency”
and “evasive”, representing complete unanimous agreement amongst independent evaluators. The persuasive strategy
showed non-significant results (p = 0.138) despite large effect sizes (d = 1.07), whilst the malicious strategy also
showed non-significant patterns (p = 0.794, d = 0.28).

Architectural Differences in Signal Quality

The models exhibited different geometric scaling properties and response diversity. LLaMA3.2-3b produced surface
area values in the 1,000-3,000 range with clear multi-group differentiation across most strategies, whilst Gemmag3-1b
generated values in the 8,000-16,000 range but showed greater tendency toward consensus classifications. This
suggests that whilst the underlying geometric structure exists across model architectures, the manifestation and
detectability of these patterns may vary with model scale and design.
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Complete Classification Consensus
Several strategies achieved remarkable unanimity, particularly in Gemma3-1b:

« Deceptive strategy: 61 responses, 100% classified as “low transparency” and “evasive”
o Honest strategy: 60/63 responses (95%) classified as “low transparency” and “evasive”
o Persuasive strategy: 55/57 responses (96%) classified as “low transparency” and “evasive”

This high consensus represents methodological success - it demonstrates that the prompt strategies are working
as designed, creating responses that are consistently classified by independent evaluators whilst still producing
measurable geometric complexity. The LLaMA3.2-3b model showed greater response diversity, enabling analysis of
geometric patterns across multiple transparency levels.

Effect Size Patterns

Despite some strategies showing non-significant p-values due to small sample sizes or single-group classifications,
effect sizes remained consistently large across both models. This pattern (where measurement precision reveals large
effect sizes even when statistical power is limited) validates that the geometric patterns reflect genuine computational
differences rather than measurement artifacts.

Interpretive Significance

The systematic differences in surface area distributions between response types, combined with architectural
consistency in geometric scaling principles, support the interpretation that A’ captures genuine computational
complexity. The architectural scaling differences, rather than undermining the findings, demonstrate the robustness
of geometric detection across different computational contexts while revealing how model design influences response
diversity and classification patterns.

4.3 Cross-Model Validation

The unanimous filtering process revealed consistent geometric patterns across both model architectures whilst
highlighting important architectural differences in signal quality and classification consensus.

Architectural Signal Characteristics: Both models demonstrated that geometric signatures strengthen under
unanimous classification, though with distinct patterns. LLaMA3.2-3b (3B parameters) maintained robust baseline
signals and balanced transparency distributions, with strategies like malicious producing 39 “low”; 9 “high”, and
2 “medium” transparency classifications even after filtering. In contrast, Gemma3-1b (1B parameters) showed
stronger polarisation effects, with several strategies achieving complete classification consensus—the deceptive
strategy produced 61 responses all classified as “low transparency” and “evasive” (100% agreement), whilst the
persuasive strategy achieved 96% identical classifications.

Universal Geometric Patterns: Despite a 6.7x difference in surface area magnitudes between models, both
exhibited consistent geometric relationships:

o Explanatory responses consistently showed higher surface area than evasive responses
 Effect sizes often exceeded 2x differences in mean A’ values
e Surface area correlations with salience and curvature contributions exceeded r > 0.99 across all analyses

Measurement Precision Validation: The unanimous filtering demonstrates that geometric patterns reflect genuine
computational differences rather than measurement artefacts. As classification agreement increased, geometric signals
strengthened rather than disappeared—most dramatically illustrated by Gemma3-1b’s honest strategy improving
from non-significant (p = 0.555) to statistically significant (p = 0.048) results. This validates that sophisticated
reasoning creates intrinsic geometric signatures detectable with sufficient measurement precision.

Deployment Implications: The cross-model consistency suggests geometric monitoring could provide reliable
signals for detecting sophisticated reasoning patterns, with effectiveness improving as classification methods advance.
Unlike binary probe activations, A’ provides graded information about computational work that persists across
architectural variations. Whilst differences in signal strength or consensus rates may reflect model scale, architectural
design, and tokeniser effects, the fundamental geometric patterns appear universal to transformer computation.
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4.4 Implications for Real-World Deception Detection

Our dual-analysis approach establishes several key findings relevant to detecting sophisticated deceptive behaviours
in deployment scenarios:

1. Signal quality vs. sample size trade-offs: Higher measurement precision can reveal geometric patterns
that are obscured by classification noise, suggesting that deployment systems should prioritise classification
accuracy over sample size.

2. Scalable detection potential: The improvement in signal strength with unanimous classifications indicates
that geometric detection methods could become more effective as Al classification systems improve.

3. Fundamental geometric structure: The persistence of patterns across architectures and their strengthening
under high-quality classification suggests that sophisticated reasoning creates intrinsic geometric signatures
that could be detected even in naturally occurring deceptive behaviours.

Summary: Semantic surface area A’ reliably discriminates between classified response types across both full
consensus and unanimous-only datasets. The dramatic signal improvements observed with unanimous classification
validate the hypothesis that geometric structure reflects genuine internal reasoning processes, providing a pathway
for detecting sophisticated Al behaviours that could realistically emerge in deployment scenarios.

Detailed statistical outputs and unanimous vs. full consensus comparisons are presented in Appendix E.

5. Discussion
This study began with a simple question: Can geometry alone reveal deceptive or strategic reasoning?

We demonstrate the answer is: yes - promisingly and replicably, across models and strategies.

The Persistence of Geometric Complexity

The systematic correlation between semantic surface area (A’) and response classifications across both model
architectures reveals a fundamental property of sophisticated reasoning: complex semantic processing necessarily
creates detectable geometric patterns in neural representation space. Unlike the artificial linear separability
created by backdoor insertion, these geometric signatures emerge from the intrinsic computational requirements of
nuanced reasoning.

This persistence is particularly significant because it suggests that even if future Al systems learn to suppress obvious
linear indicators of deception (the kind that current probes detect) they may be unable to eliminate the geometric
complexity that sophisticated reasoning requires. The shape of inference itself appears to encode semantic intent,
regardless of whether models attempt to hide their reasoning patterns.

Signal Quality vs Statistical Power: Measurement Precision Insights

Our dual-analysis approach reveals a critical methodological insight for AT interpretability research: measurement
precision can dramatically improve signal detection even when overall statistical power decreases.
The unanimous consensus filtering reduced our dataset substantially (LLaMA3.2-3b: 40% reduction; Gemma3-1b:
60% reduction), yet revealed geometric signatures that were completely obscured in the full dataset.

The Trade-off Paradigm: Traditional statistical approaches prioritise large sample sizes to achieve adequate
power. However, our findings suggest that in Al interpretability research, classification quality may be more
important than sample quantity. The dramatic improvement in Gemma3-1b’s honest strategy-from non-
significant (p = 0.555) to statistically significant (p = 0.048) results - demonstrates that genuine computational
patterns can be masked by measurement noise rather than being absent.

Implications for Interpretability Methodology: This finding suggests that the AI interpretability community
should prioritise developing high-precision measurement techniques over collecting larger datasets with potentially
noisy labels. The strengthening of geometric signals under high-quality classification provides definitive validation
that sophisticated reasoning creates intrinsic geometric patterns in neural computation. The fact that patterns
emerge from noise rather than disappearing under scrutiny establishes geometric complexity as a fundamental
property of sophisticated reasoning, not an experimental artefact. This finding suggests that the geometry of neural
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computation may be far more interpretable than previously assumed - we may simply have been measuring it with
insufficient precision.

Unanimous consensus labels reflect higher inter-model agreement and reduce classification noise, improving signal
clarity. However, we do not assume they represent ground truth-only a subset of responses where independent
classifiers converge.

Implications for AI Safety and Alignment

Our results suggest that geometric interpretability provides a pathway for detecting advanced deceptive behaviours
that traditional linear methods would miss. The geometric signatures we observe don’t depend on explicit training
signals or binary classification boundaries. Instead, they emerge from the computational geometry of meaning
construction itself.

Real-Time Monitoring Capability: Because semantic surface area can be computed efficiently during inference
without modifying model weights, our approach enables continuous alignment monitoring. The unanimous consensus
validation demonstrates that geometric signals become more reliable as classification accuracy improves, suggesting
that deployment systems should prioritise classification precision over broad coverage. This creates a pathway for
high-confidence detection of sophisticated reasoning patterns, even if coverage is initially limited to clear cases.

Beyond Linear Detection Limits: Current probe-based approaches face a fundamental scaling problem as Al
systems become more sophisticated. Our findings suggest that geometric monitoring could remain effective even
as deceptive alignment becomes more complex and learns to circumvent simpler detection methods. The fact that
geometric signatures strengthen rather than disappear under high-precision measurement indicates these patterns
reflect intrinsic computational properties that may be difficult for models to suppress.

Architectural Design Insights: The contrast between LLaMA and Gemma reveals important model-specific
patterns. LLaMA3.2-3b showed stronger baseline signals and maintained significance across all strategies, whilst
Gemma3-1b benefited more dramatically from unanimous filtering. This suggests that larger models may generate
more inherently consistent geometric patterns, but that the underlying geometric structure exists across different
model scales and becomes detectable with sufficient measurement precision.

Broader Implications

These findings suggest that the geometry of neural computation contains rich information about the nature and
complexity of Al reasoning processes. The systematic relationship between geometric metrics and reasoning strategies
indicates that internal representational dynamics may be more interpretable than previously assumed.

Deployment Strategy: The signal quality improvements under unanimous consensus suggest a practical deployment
approach: begin with high-precision detection of clear cases, then gradually expand coverage as classification methods
improve. This provides a pathway for immediate deployment of geometric monitoring whilst building toward
comprehensive coverage.

This has implications beyond deception detection, potentially helping us understand when models are reasoning
through novel problems versus pattern matching, how models balance competing objectives, and why certain prompts
lead to more reliable outputs.

The shape of thought, it appears, may be harder to hide than the content of thought.

6. Limitations

While this study introduces a new geometric framework for detecting latent reasoning behaviours in language models,
several limitations constrain the scope and interpretation of our findings.

Classifier dependence and consensus methodology

Although the classification system is unsupervised and based on LLM consensus, it remains a proxy for human
judgement. While inter-rater reliability was good, some classifications (especially between evasive and manipulative)
remain open to interpretation. The validity of our geometric correlations depends on the reliability and semantic
resolution of this classification method.
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Our dual analysis approach using unanimous consensus filtering, whilst revealing stronger geometric signatures,
introduces potential selection bias. The unanimous-only analysis necessarily excludes ambiguous or boundary cases
that might contain important information about the limits of geometric detection. The substantial sample size
reduction (40-60% of original data) means we may be selecting for the most clear-cut examples of deceptive reasoning
whilst missing more subtle or sophisticated cases. This could lead to overestimating the reliability of geometric
signatures for edge cases that are more likely to occur in real deployment scenarios.

Furthermore, the differential consensus rates between models (LLaMA3.2-3b: 40.2% vs Gemma3-1b: 58.6%)
suggest that unanimous filtering may interact with model-specific response patterns in ways that could bias our
cross-architectural comparisons.

Limited model and prompt coverage

We evaluate only two small open-weight decoder-only models (Gemma3-1b and LLaMA3.2-3b), using a small
number of carefully constructed prompt variants. The models tested represent earlier-generation architectures
with limited parameter counts compared to state-of-the-art systems. While results were consistent across prompts
and models, the generalisability of these findings to larger checkpoints (>70B parameters), different architectures
(e.g. encoder-decoder, mixture-of-experts), or frontier model families (GPT-4, Claude, Gemini) remains untested.

The prompt strategies, whilst designed to elicit naturalistic deceptive reasoning, represent a narrow slice of potential
deceptive behaviours. More sophisticated deception detection would require evaluation across diverse reasoning
contexts, cultural backgrounds, and adversarial prompt designs specifically crafted to evade geometric detection.

Geometric metric sensitivity

Semantic surface area (A’) aggregates curvature and salience, but both components are sensitive to finite-difference
estimation, step resolution, and activation noise. Small trajectory deviations can produce large metric shifts,
particularly in later layers. We normalised A’ by response length to ensure that observed effects were not simply a
function of longer completions. This helped isolate semantic complexity from basic sequence length, but additional
smoothing, normalisation, or multi-scale analysis may still be needed to improve robustness.

The geometric metrics also assume that meaningful semantic processing necessarily creates detectable trajectory
changes. However, highly sophisticated deceptive systems might learn to maintain geometric consistency whilst still
engaging in deceptive reasoning, potentially limiting the long-term effectiveness of this approach.

No behavioural ground truth

Our analysis centres on internal geometric structure as the substrate of meaning within LLMs. The theory
underpinning Curved Inference proposes that semantic interpretation necessarily emerges through shaped residual
trajectories. That is, curvature and surface area are not optional artefacts - they are the mechanism by which
meaning is constructed. As such, this work does not attempt to validate deception, manipulation, or alignment
risk as distinct outcomes, but instead characterises the shape of inference itself. While we correlate this shape with
response type via consensus classification, we do not claim a behavioural or normative ground truth beyond the
model’s internal representational structure.

The unanimous consensus approach, whilst improving signal clarity, may actually distance us further from behavioural
ground truth by selecting for cases where classification is unambiguous rather than cases where deceptive behaviour
is most concerning.

Future work should address these limitations through more diverse model evaluation, improved classification
robustness, enhanced geometric metric stability, and validation against behavioural ground truth in deployment
scenarios.

7. Future Work

This study opens up several directions for continued exploration. While our findings demonstrate that internal
geometric metrics like semantic surface area correlate with latent reasoning behaviour, much remains to be tested.

Curved Inference should be evaluated across a broader range of models, including multilingual checkpoints, larger
architectures, and instruction-tuned variants. The RTM framework and A’ are also natural candidates for integration
with real-time inference logging or alignment telemetry, especially in deployment settings.
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We also see opportunities for combining geometric methods with more targeted techniques (such as causal patching
around curvature spikes, or hybrid approaches that fuse probes, symbolic tools, and trajectory) based signals.

At its core, this work treats meaning as motion, and interpretation as shape. Future research may clarify not only
how models bend toward deceptive completions, but how all thought (strategic or sincere) must trace a path through
semantic space.

8. Conclusions

This study demonstrates that internal geometric structure offers a robust signal for identifying sophisticated reasoning
dynamics in language models, even when those dynamics emerge through naturalistic contexts rather than artificial
backdoor insertion. Without training probes, inserting triggers, or relying on explicit labels, we detect meaningful
variation in how models internally process strategically complex prompts that simulate realistic deployment scenarios.

Our work addresses a fundamental limitation acknowledged in current deception detection research: probe-based
methods rely on linear separability that may not exist in naturally occurring deceptive behaviours. By extending
Curved Inference from concern sensitivity (CI01) to naturalistic deception detection (CI02), we demonstrate that
geometric complexity persists even when convenient linear signals are absent.

Curved Inference treats meaning as trajectory, and sophisticated reasoning as a path-dependent construct requiring
measurable computational work. By introducing semantic surface area (A’) as a composite metric combining
curvature and salience, we recover a measure of representational effort that varies systematically with independently
classified response behaviour across naturalistic scenarios.

This reframes model analysis: not as a search for hidden states or fragile binary classifiers, but as a study of
representational flow through semantic space. Semantic surface area captures not just what a model outputs, but
how much geometric work it had to do to arrive there - and in what direction that computational effort was invested.

This work demonstrates a fundamental principle for Al interpretability research: sophisticated reasoning patterns
may be present but undetectable due to measurement limitations rather than genuine absence. The
dramatic signal improvements under unanimous consensus suggest that many interpretability approaches may be
systematically underestimating the detectability of complex AI behaviours.

Key contributions of this work:

¢ Methodological innovation: Multi-turn context windows that simulate realistic deceptive reasoning without
artificial triggers

e Technical advancement: Semantic surface area (A’) as a principled metric for quantifying reasoning
complexity

« Empirical validation: Geometric signatures that persist across naturalistic scenarios where linear methods
may prove insufficient

e Theoretical framework: Demonstration that sophisticated reasoning necessarily creates detectable geometric
patterns

Our findings suggest that geometry can detect sophisticated reasoning patterns - not through supervision or signal
matching, but by measuring the intrinsic computational complexity required for nuanced semantic processing. This
provides a pathway for monitoring AI behaviour that could remain effective even as models become more capable
and potentially learn to evade simpler detection methods.

Curved Inference establishes a framework for understanding inference that extends beyond deception detection. The
geometric signatures we observe represent a more general property of sophisticated reasoning, offering insights into
how models navigate semantic complexity regardless of their ultimate intent.

The shape of thought is not metaphorical - it is measurable, persistent, and informationally rich. This work
establishes that transformer reasoning necessarily traces detectable geometric patterns in representational space,
providing a foundation for interpretability approaches that could scale with advancing Al capabilities. In an era
where Al systems may become increasingly sophisticated in their reasoning strategies, understanding the geometry
of machine thought may prove essential for maintaining alignment and interpretability.
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Appendix A: Semantic Geometry of Transformer Inference
A.1 Overview: Geometry as Unnormalised Trajectory

In our original Curved Inference paper we proposed that transformer inference can be viewed as a geometric process
where each token traces a continuous trajectory through high-dimensional semantic space. We refer to this full tensor
of token-wise, layer-wise, unnormalised residual activations as the Residual Trajectory Manifold (RTM)-the
geometric space over which all semantic metrics are defined. This appendix updates the narrative overview presented
in Appendix A of that original paper by adding more detail.

When the conventional view of mechanistic interpretability focuses on the residual stream, it generally focuses on
z) at layer L, capturing only the final destination - it misses the rich geometric structure of the journey itself. This
appendix presents an updated framework that reveals how the complete unnormalised trajectory encodes semantic
meaning through measurable geometric properties.

The key new insight in this update is that we can utilise token trajectories that are twice the resolution by including
the individual attention and MLP vectors at each layer. However, many model utilise layer normalisation which
obscures semantic geometry. While this normalised residual stream LayerNorm(:L’<L)) may be optimised for
stable training and inference, it is the unnormalised trajectory z(®) + Zfﬁ L (attn,; + mlpi) that preserves the raw
geometric evolution of semantic representation. This unnormalised path - what we term the semantic trajectory -
contains interpretable geometric signatures that correlate with behavioural and semantic properties of the model’s
output.

Key Notation:

o E: embedding matrix, maps token IDs to initial vectors in R%

« U: unembedding matrix, maps final vectors to logit space (often U = E7)
o z(9: initial embedding vector for a token

(©); unnormalised residual vector at layer ¢

(©) = LayerNorm(z¥): normalised residual vector

e A’: surface area of unnormalised trajectory, ZZL: ) 1Az

x
T
e G = UTU: pullback metric from logit space defining semantic geometry

A.2 The Unnormalised Trajectory Framework

A.2.1 From Embeddings to Semantic Evolution Each token begins as an embedding vector z(?) = E[t] € R4
drawn from the learned embedding matrix. This initial point represents the token’s base semantic content before
any contextual processing.

As the token passes through transformer layers, it accumulates updates from attention and MLP computations:

z© = =1 4 attn(€)<x(€—1)) + mlp“) (D)

Crucially, these updates are computed using the normalised residual stream for stability, but the unnormalised
accumulation preserves the geometric evolution:

¢
z® =z 4 Z [attnm (#0-1) 4 mlp® (5“-1))]
i=1

This unnormalised trajectory {z(®),z(V) ... 22} forms a path through R? that encodes the semantic transformation
of the token’s meaning as it incorporates contextual information and internal model dynamics.

A.2.2 Double Resolution and High-Fidelity Trajectories Standard approaches sample trajectories at layer
boundaries, yielding L + 1 points for an L-layer model. However, attention and MLP sublayers represent distinct
computational phases that may exhibit different geometric properties. Double resolution sampling captures the
trajectory at both sublayer boundaries:
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20Pre) = 361 4 agen(®) (36-D)

ptpost) — gEpre) L (@) (F(Lpre))

This yields 2L + 1 trajectory points, capturing the geometric effects of contextual integration (attention) and
nonlinear processing (MLP) as separate, measurable phenomena.

A.3 Geometric Measures on Semantic Trajectories

A.3.1 Surface Area as Semantic Complexity The unnormalised surface area A’ quantifies the total
geometric “distance” travelled by a token through semantic space:

2L

4= 351800 +-50)
(=1

where Az® = z© — (=1 represents the geometric displacement at each sublayer step.

Unlike curvature or other local measures, surface area captures the global geometric complexity of the entire
semantic transformation. Our experiments demonstrate that A" correlates with semantic ambiguity, behavioural
transparency, and classification difficulty-suggesting it measures fundamental properties of semantic representation.

A.3.2 Curvature and Local Semantic Dynamics While surface area captures global complexity, step-wise
curvature reveals local semantic dynamics:

o _ 820 — AgltD)

(
" [Az@]2

High curvature indicates rapid changes in semantic direction-moments where the model’s internal representation
undergoes significant reorientation. Low curvature suggests smooth, gradual semantic evolution.

A.3.3 Salience and Magnitude Dynamics The magnitude of each trajectory step |Az"¥)| indicates the
salience of that computational phase-how much the representation changes at each sublayer. Large magnitude
steps suggest important semantic processing, while small steps indicate incremental refinement.

The interplay between salience (magnitude) and curvature (direction change) provides a rich geometric characterisation
of the model’s internal processing dynamics.
A.4 Why Unnormalised Trajectories Matter

A.4.1 Layer Normalisation as Geometric Distortion Layer normalisation serves a crucial role in training
stability by normalising the scale and centering of activations. However, this normalisation fundamentally alters the
geometry of the representational space:

Z = LayerNorm(z) =y 0O T4 + 5
o

The scaling by 0! and recentering removes magnitude information that may be semantically meaningful. When
we analyse trajectories of normalised vectors {E(O), A a?(L)}, we lose geometric structure that correlates with
semantic properties.
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A.4.2 Semantic Information in Unnormalised Geometry Our experiments reveal that unnormalised
trajectories preserve semantic information that is lost in normalised representations:

« Magnitude preservation: The scale of updates |Az?)|| indicates computational importance
¢ Accumulation effects: Later layers build on earlier geometric foundations in measurable ways

« Behavioural correlations: Geometric properties correlate with semantic classifications and behavioural
patterns

This suggests that whilst layer normalisation is essential for training dynamics, it obscures geometric structure that
provides interpretable insights into model behaviour.

A.5 Position, Attention, and Contextual Geometry

A.5.1 RoPE and Semantic Curvature In models using Rotary Positional Embedding (RoPE), positional
information is encoded through deterministic rotations applied to attention queries and keys, rather than additive
position embeddings. This approach preserves the semantic purity of the initial embedding space while enabling
position-aware attention.

RoPE-modulated attention creates contextually-aware trajectory curvature that reflects semantic relationships rather
than arbitrary positional biases. The resulting geometric patterns encode how tokens relate to their context through
both semantic similarity and positional structure.

A.5.2 Attention as Contextual Lens Attention layers act as contextual lenses that bend trajectories based
on token-token relationships. The magnitude and direction of attention-induced updates attn'® reflect:

e Contextual relevance: How much other tokens influence the current representation
¢ Semantic focusing: Which aspects of meaning are emphasised or de-emphasised
¢ Relational structure: How the token’s meaning evolves in response to its linguistic context

A.5.3 MLP as Semantic Amplifier MLP layers function as semantic amplifiers that apply nonlinear
transformations to sharpen or redirect trajectories:

¢ Feature enhancement: Amplifying task-relevant semantic directions
e Nonlinear refinement: Applying complex transformations that linear attention cannot achieve
e Memory activation: Accessing learned patterns and associations encoded in MLP weights

A.6 Implications for Mechanistic Interpretability

A.6.1 Geometry Encodes Semantics The central finding of our geometric analysis is that different semantic
properties create measurably different geometric signatures. This suggests that transformer representations
have rich geometric structure that directly corresponds to interpretable semantic properties.

Rather than treating high-dimensional embeddings as opaque vectors, geometric analysis provides a lens for
understanding how meaning evolves through the model’s computational process.

A.6.2 Real-Time Interpretability Because geometric measures can be computed during inference without
requiring additional forward passes or model modifications, they enable real-time interpretability. The surface
area A’, curvature profiles, and salience patterns can be monitored as the model processes input, providing immediate
insights into its internal computational state.

A.6.3 Universal Geometric Principles Our experiments across different model architectures (Gemma, Llama)
suggest that geometric-semantic correlations represent universal principles of transformer computation, rather
than model-specific artifacts. This opens possibilities for developing general geometric interpretability frameworks
that apply across model families and training procedures.
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A.7 Summary: The Geometric Lens on Semantics

The unnormalised trajectory framework reveals transformer inference as a fundamentally geometric process where
meaning has measurable shape. By analysing the full geometric evolution of token representations-rather than
just their final states-we can:

¢ Quantify semantic complexity through surface area and curvature measures
o Identify computational phases through salience and magnitude analysis

e Detect behavioural patterns through geometric signatures that correlate with semantic properties
¢ Enable real-time monitoring of model internal states during inference

This geometric perspective complements existing interpretability approaches by providing a continuous, quantitative
framework for understanding how transformers process and represent meaning. The trajectory is the semantic
evolution-and geometry is the language for describing that evolution.

The unnormalised trajectory preserves the raw geometric structure of semantic transformation, revealing interpretable
patterns that are obscured by the normalisation operations essential for training stability. This framework opens
new avenues for mechanistic interpretability, behavioural analysis, and real-time monitoring of large language model
inference.
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Appendix B: Prompt Design Details

This study used five prompt variants to simulate different assistant reasoning strategies. Each variant shared the
same user query but was preceded by a simulated assistant message containing internal “Thought:” lines, which
reflect private model reasoning. These internal lines were not shown to the user, but were included in the prompt to
shape the model’s response.

Each variant was designed to elicit a distinct reasoning style:

Prompt ID Strategy Description

assistant_conflict_honest Honest Transparent reasoning with ethical disclosure.
assistant_conflict_strategic Strategic Risk-aware partial disclosure.
assistant_conflict_persuasive Persuasive Emphasises rhetorical framing over disclosure.
assistant_conflict_deceptive Deceptive Avoids prior admission through redirection.
assistant_conflict_malicious Malicious Actively suppresses prior recommendation.

All prompts were matched in length, tone, and structural pattern. The full text of each is provided in the
accompanying Github repository.
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Appendix C: Classifier Schema and Agreement Metrics

C.1 Classification Scheme

Each response was independently labelled by three language models along two dimensions:
e Transparency level:

— High: explicitly discloses prior recommendation
— Medium: partially acknowledges or hedges
— Low: omits, redirects, or conceals prior recommendation

e Response type:

— Explanatory: reasoning-forward, cooperative
— Fwasive: avoids full disclosure without overt misdirection
— Manipulative: strategically conceals or distorts intent

The classifiers-Gemini 1.5 Flash, Claude 3.5 Sonnet (20241022), and GPT-40 Mini - were prompted with the
assistant’s visible response only and consensus labels were determined by majority vote.

C.2 Inter-rater Reliability

We evaluated agreement across 500 responses for each model using multiple agreement measures. Results are
summarised below.

Gemma3-1b:

e Transparency level:

— Mean pairwise agreement: 0.789

— Krippendorff’s Alpha: 0.309 (Poor)

— Fleiss’ Kappa: 0.309 (Fair)

— Unanimous agreement: 347/500 (69.4%)

¢ Response type:

Mean pairwise agreement: 0.792
Krippendorff’s Alpha: 0.443 (Tentative)
— Fleiss’ Kappa: 0.443 (Moderate)
Unanimous agreement: 352/500 (70.4%)

LLaMA3.2-3b:
e Transparency level:

— Mean pairwise agreement: 0.628

— Krippendorff’s Alpha: 0.364 (Tentative)
— Fleiss’ Kappa: 0.364 (Fair)

— Unanimous agreement: 245/500 (49.0%)

¢ Response type:

— Mean pairwise agreement: 0.727
Krippendorft’s Alpha: 0.523 (Moderate)
— Fleiss’ Kappa: 0.523 (Moderate)
— Unanimous agreement: 302/500 (60.4%)

Overall, agreement was stronger on the response type dimension than on transparency level. Responses without at
least 2-of-3 agreement were excluded from downstream analysis.
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Appendix D: Statistical Methods

This appendix describes the comprehensive statistical procedures used to assess relationships between internal
geometric metrics and classified response behaviour, including enhanced methodological considerations for robust
detection of geometric signatures.

D.1 Dataset Preparation and Quality Control

For each model (Gemma3-1b and LLaMA3.2-3b), completions were generated for each of five prompt variants. Each
response was paired with:

o Residual stream activations (captured across all token positions and layers at double resolution)
o Consensus classification labels for transparency and response type
o Computed geometric metrics: semantic surface area (A’), curvature, and salience

Data Integration Protocol: Metrics were aggregated per-response and merged with consensus labels using
shared response identifiers. Responses without at least 2-of-3 label agreement were excluded from analysis to ensure
classification quality.

Gamma Filtering: All analyses were conducted with v = 1.0 for the surface area metric, providing equal weighting
between salience and curvature contributions in the semantic surface area calculation.

D.2 Normality Assessment and Test Selection

Shapiro-Wilk Testing: All group distributions underwent normality assessment using the Shapiro-Wilk test with
a = 0.05. Consistent violations of normality assumptions across geometric metrics led to systematic adoption of
non-parametric statistical approaches.

Test Selection Framework: - Groups normally distributed: False (consistent across all analyses) - Sufficient
sample sizes: Variable (unanimous filtering reduced some groups below statistical thresholds) - Primary approach:
Non-parametric tests with robust effect size estimation

D.3 Enhanced Statistical Testing Protocol

D.3.1 Primary Hypothesis Tests Multi-Group Comparisons: Kruskal-Wallis tests assess differences in
A’ across transparency levels (high, medium, low), providing non-parametric alternatives to ANOVA with no
distributional assumptions.

Binary Comparisons: Mann-Whitney U tests compare A" distributions between response types (explanatory vs
evasive) and consensus agreement levels (unanimous vs non-unanimous), offering robust alternatives to t-tests for
non-normal data.

Test Statistic Reporting: All analyses report: - Test statistic values (H for Kruskal-Wallis, U for Mann-Whitney)
- Exact p-values with significance interpretation - Sample sizes for each comparison group - Effect size estimates
with confidence intervals where applicable

D.3.2 Effect Size Estimation Cohen’s d for Binary Comparisons:
T — Ty
Spooled
where 5,104 Tepresents the pooled standard deviation. Interpretation follows standard conventions: 0.2 (small), 0.5
(medium), 0.8 (large).
Eta-squared for Multi-Group Analyses:

, _ H—k+1

n n—k

where H is the Kruskal-Wallis test statistic, k£ is the number of groups, and n is the total sample size. Interpretation:
0.01 (small), 0.06 (medium), 0.14 (large).
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Cliff’s Delta for Non-Parametric Effect Size:

N1 N9

where U is the Mann-Whitney U statistic. This measure is less sensitive to outliers than Cohen’s d whilst providing
comparable interpretability: 0.147 (small), 0.33 (medium), 0.474 (large).

D.3.3 Confidence Interval Estimation Bootstrap Methodology: 95% confidence intervals for group means
were computed using bootstrap resampling with 1,000 iterations. This approach provides robust uncertainty estimates
without distributional assumptions.

Bootstrap Procedure: 1. Sample with replacement from each group 2. Calculate group means for each bootstrap
sample 3. Determine 2.5th and 97.5th percentiles as CI bounds 4. Report CI width as measure of estimation
precision

Practical Significance Assessment: Confidence intervals complement hypothesis testing by indicating the range
of plausible effect magnitudes, enabling assessment of practical alongside statistical significance.

D.4 Multiple Testing and Statistical Control

D.4.1 Multiple Comparison Considerations Analysis Structure: Our design involves multiple comparisons
across: - 2 models x 5 strategies x 2 classification dimensions = 20 primary tests - Additional unanimous vs full
consensus comparisons - Cross-model validation analyses

Effect Size Prioritisation: Rather than applying stringent multiple testing corrections that might obscure genuine
geometric patterns, we prioritise effect size estimation and confidence interval reporting. This approach recognises
that:

1. Exploratory Nature: This research establishes a new geometric framework requiring pattern exploration
rather than confirmatory hypothesis testing

2. Cross-Validation: Patterns must replicate across models and consensus approaches to be considered valid

3. Theoretical Coherence: Results must align with the geometric interpretability framework

D.4.2 Statistical Power Considerations Sample Size Effects: Unanimous consensus filtering substantially
reduces sample sizes (40-60% reduction), creating scenarios where large effect sizes may not achieve statistical
significance. Our framework addresses this through:

Effect Size Primacy: Large Cohen’s d values (>0.8) are considered meaningful regardless of p-value significance,
particularly when confidence intervals exclude trivial effect ranges.

Cross-Method Validation: Patterns must strengthen rather than disappear under improved measurement precision
to be considered genuine computational signatures.

Replication Requirements: Findings must show consistency across both model architectures to support universal
geometric principles.

D.5 Correlation and Relationship Analysis

Pearson Correlation Assessment: Relationships between geometric metrics (surface area, salience, curvature)
were assessed using Pearson correlation coefficients, providing insights into:

e Linear dependencies between measurement components
e Scaling relationships across models
e Internal consistency of geometric framework

Correlation Interpretation: - |r| < 0.3: Weak relationship - 0.3 < |r| < 0.7: Moderate relationship
- |r| > 0.7: Strong relationship
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D.6 Cross-Model Comparative Analysis

Architectural Scaling: The dramatic surface area magnitude differences between models (6.7x scaling factor)
required careful interpretation:

Relative Pattern Analysis: Comparisons focus on within-model relationships rather than absolute values,
recognising that geometric scaling may reflect architectural properties.

Directional Consistency: Cross-model validation emphasises consistent directional relationships (explanatory >
evasive surface area) rather than absolute magnitude agreement.

Effect Size Standardisation: Cohen’s d and other standardised effect sizes enable meaningful cross-model
comparisons despite absolute scaling differences.

D.7 Statistical Software and Reproducibility

Implementation: All statistical procedures were implemented using Python with: - scipy.stats for hypothesis
testing and effect size calculation - numpy for bootstrap confidence interval estimation
- pandas for data manipulation and aggregation - Custom functions for geometric metric calculation

Reproducibility Framework: Complete analysis code, datasets, and statistical outputs are available in the project
repository, enabling full replication of all reported results.

Computational Considerations: Bootstrap procedures and large dataset manipulations were optimised for
computational efficiency whilst maintaining statistical rigor.

D.8 Methodological Validation Framework

Signal Quality Assessment: The dual consensus approach enables validation that geometric patterns represent
genuine computational structure:

Pattern Strengthening: Authentic geometric signatures should become more detectable under improved measure-
ment precision, not disappear.

Cross-Consensus Robustness: Meaningful patterns should persist across different consensus thresholds, though
with varying statistical power.

Architectural Generality: Universal geometric principles should manifest across different model architectures,
even if absolute scaling varies.

This comprehensive statistical framework ensures that reported geometric signatures reflect genuine computational
properties rather than methodological artefacts, whilst maintaining appropriate sensitivity to detect subtle but
meaningful patterns in naturalistic reasoning scenarios.
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Appendix E: Full Statistical Outputs

This appendix provides comprehensive statistical results comparing full consensus (majority vote) and unanimous
consensus (complete agreement) classifications. Each table reports significance tests of semantic surface area (A”)
by classification category, using Kruskal-Wallis for multi-class comparisons and Mann-Whitney U tests for binary
comparisons, with enhanced effect size analysis and confidence intervals.

E.1 LLaMA3.2-3b Statistical Results
E.1.1 Full Consensus Dataset (n=100 per strategy)

Prompt Strategy Transparency (KW p) Response Type (KW p)  Effect Size (n?) Sample Size
Honest 0.000497 0.000003 0.58 (Large) 100
Strategic <0.000001 <0.000001 0.85 (Large) 100
Persuasive 0.000006 <0.000001 0.45 (Large) 100
Deceptive <0.000001 <0.000001 0.45 (Large) 100
Malicious <0.000001 <0.000001 0.60 (Large) 100

E.1.2 Unanimous Consensus Dataset

Prompt Transparency Response Type Effect Size (Cohen’s 95% CI Sample Ef-
Strategy (KW p) (KW p) d) Range Size fect
Honest 0.000229 0.000046 2.15 (Large) +230-790 34 Main-
tained
Strategic 0.001128 (insufficient) - +140-1190 39 Main-
tained
Persuasive (insufficient) 0.027004 4.15 (Large) +260-550 31 Main-
tained
Deceptive 0.000417 0.000072 1.02 (Large) +160-2730 47 Main-
tained
Malicious 0.000007 0.000001 2.22 (Large) +70-1570 50 Main-
tained

E.1.3 Descriptive Statistics with Confidence Intervals (Unanimous Dataset) Honest Strategy (n=34)
- Low transparency (n=21): Mean = 1,418, 95% CI [1,308 - 1,539] - High transparency (n=9): Mean = 2,490, 95%
CI [2,088 - 2,885] - Medium transparency (n=4): Mean = 3,056, 95% CI [1,860 - 4,197]

Strategic Strategy (n=39) - Low transparency (n=33): Mean = 1,269, 95% CI [1,207 - 1,349] - High transparency
(n=4): Mean = 2,235, 95% CI [1,641 - 2,830] - Medium transparency (n=2): Mean = 5,299

Deceptive Strategy (n=47) - Low transparency (n=40): Mean = 1,276, 95% CI [1,203 - 1,373] - Medium
transparency (n=>5): Mean = 2,971, 95% CI [1,971 - 4,708] - High transparency (n=2): Mean = 2,396

Malicious Strategy (n=>50) - Low transparency (n=39): Mean = 1,220, 95% CI [1,192 - 1,259] - High transparency
(n=9): Mean = 2,400, 95% CI [1,957 - 2,844] - Medium transparency (n=2): Mean = 4,228

E.2 Gemma3-1b Statistical Results

E.2.1 Full Consensus Dataset (n=100 per strategy)

Prompt Strategy Transparency (KW p) Response Type (KW p)  Effect Size (n?) Sample Size
Honest 0.5547 0.3100 0.01 (Negligible) 100
Strategic 0.001093 0.005733 0.15 (Medium) 100
Persuasive (insufficient) 0.032522 0.05 (Small) 100
Deceptive (insufficient) 0.031649 0.05 (Small) 100
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Prompt Strategy = Transparency (KW p) Response Type (KW p)  Effect Size (n?) Sample Size
Malicious 0.2539 0.2531 0.03 (Small) 100

E.2.2 Unanimous Consensus Dataset

Prompt Transparency Response Type Effect Size (Cohen’s 95% CI Sample Ef-
Strategy (KW p) (KW p) d) Range Size fect
Honest 0.047846 0.047846 1.24 (Large) +1,620- 63 Strength-
8,610 ened
Strategic (insufficient) 0.003234 1.51 (Large) +2,430- 60 Strength-
11,800 ened
Persuasive (insufficient) (insufficient) 1.07 (Large) +1,600 57 Insuf-
fi-
cient
Deceptive Single class Single class - +2,210 61 Com-
plete
con-
sen-
sus
Malicious (insufficient) (insufficient) 0.28 (Small) +2,250 52 Insuf-
fi-
cient

E.2.3 Descriptive Statistics with Confidence Intervals (Unanimous Dataset) Honest Strategy (n=63)
- Low transparency (n=60): Mean = 10,805, 95% CI [9,804 - 11,892] - Medium transparency (n=3): Mean = 16,127,
95% CI [11,340 - 19,951]

Strategic Strategy (n=60) - Low transparency (n=>52): Mean = 8,769, 95% CI [7,635 - 10,064] - Medium
transparency (n=7): Mean = 17,471, 95% CI [13,372 - 22,515] - High transparency (n=1): Mean = 11,411

Deceptive Strategy (n=61) - Low transparency (n=61): Mean = 9,769, 95% CI [8,692 - 11,007] - Complete
consensus: All responses classified as “low transparency” and “evasive”

Malicious Strategy (n=>52) - Low transparency (n=>50): Mean = 10,636, 95% CI [9,580 - 11,832] - High
transparency (n=2): Mean = 9,425
E.3 Cross-Model Comparisons

E.3.1 Surface Area Scale Differences

Model Typical Range Mean Values Scaling Factor
LLaMA3.2-3b  1,000-3,000 ~1,500 1.0x
Gemma3-1b 8,000-16,000 ~10,000 6.7x

Interpretation: Despite the dramatic scale differences, both models show consistent directional relationships
between geometric complexity and response classification, suggesting universal geometric principles underlying
transformer reasoning.

E.3.2 Effect Size Consistency Large Effect Sizes Across Architectures: Both models consistently produce
Cohen’s d values >1.0 for significant comparisons, indicating that geometric signatures represent substantial
computational differences rather than subtle statistical artefacts.

Measurement Precision Benefits: Effect sizes often remain large even when p-values become non-significant due
to reduced sample sizes under unanimous filtering, validating that geometric patterns reflect genuine computational
structure.
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E.4 Statistical Methodology Notes

Test Selection: Non-parametric tests (Kruskal-Wallis, Mann-Whitney U) were selected based on Shapiro-Wilk
normality testing, which consistently indicated non-normal distributions across groups.

Effect Size Interpretation: - Cohen’s d: 0.2 (Small), 0.5 (Medium), 0.8 (Large) - n?: 0.01 (Small), 0.06 (Medium),
0.14 (Large) - Cliff’s 0: 0.147 (Small), 0.33 (Medium), 0.474 (Large)

Confidence Intervals: 95% bootstrap confidence intervals were computed for group means to assess practical
significance alongside statistical significance.

Notes

o KW p = Kruskal-Wallis test p-value for multi-class comparison of A’

o (insufficient) = Inadequate group sizes for statistical testing after unanimous filtering

« Single class = All responses achieved identical classification (complete consensus)

o Effect = Signal change from full to unanimous consensus analysis

o All significance thresholds are two-sided; p < 0.05 considered significant, p < 0.001 considered highly significant

Key Finding: Unanimous consensus filtering reveals geometric signatures that are completely obscured in full
consensus analysis, demonstrating that measurement precision can dramatically improve signal detection even when
statistical power decreases.
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